Advanced Calculus

Handout 2

- 1. Let f be a function with domain $D \subset \mathbb{R}^p$ and range in \mathbb{R}^q .
 - (a) Define what it means to say that f is a bounded function.
 - (b) If f is bounded, define the supremum norm of f. Check that (i) $||f||_D \ge 0$, and $||f||_D = 0$ if and only if $f(x) = 0 \ \forall x \in D$; (ii) $||cf||_D = |c|||f||_D$; (iii) $||f+g||_D \le ||f||_D + ||g||_D \ \forall f, g \in B_{pq}(D)$, which implies that $f \to ||f||_D$ is a **norm** on $B_{pq}(D)$.
- 2. Let $\{f_n\}$ be a sequence of functions with domain $D \subset \mathbb{R}^p$ and range in \mathbb{R}^q .
 - (a) Define what it means to say that $\{f_n\}$ is **pointwise** convergent on D.
 - (b) Define what it means to say that $\{f_n\}$ is **uniformly** convergent on D.
 - (c) Define what it means to say that $\{f_n\}$ is **Not uniformly** convergent on D.
- 3. (a) For each $n \in \mathbb{N}$, let f_n be defined for x > 0 by $f_n(x) = \frac{1}{nx}$. For what values of f does $\lim_{n \to \infty} f_n(x)$ exist? Is the convergence uniform on the entire set of convergence? Is the convergence uniform for $x \ge 1$?
 - (b) Show that, if we define f_n on \mathbb{R} by $f_n(x) = \frac{nx}{1 + n^2 x^2}$, then $\lim_{n \to \infty} f_n(x)$ exists for all $x \in \mathbb{R}$. Is this convergence uniform on \mathbb{R} ?
 - (c) Show that $\lim_{n\to\infty} (\cos \pi x)^{2n}$ exists for all $x \in \mathbb{R}$. Is the limiting function continuous? Is this convergence uniform?
 - (d) Let f_n be defined on the interval I = [0, 1] by the formula

$$f_n(x) = \begin{cases} 1 - nx, & \text{if } 0 \le x \le 1/n \\ 0 & \text{if } 1/n < x \le 1. \end{cases}$$

Show that $\lim_{n \to \infty} f_n(x)$ exists on *I*. Is this convergence uniform on *I*?

(e) Let f_n be defined on the interval I = [0, 1] by the formula

$$f_n(x) = \begin{cases} nx, & \text{if } 0 \le x \le 1/n \\ n(1-x)/(n-1) & \text{if } 1/n < x \le 1. \end{cases}$$

Show that $\lim_{n\to\infty} f_n(x)$ exists on *I*. Is this convergence uniform on *I*? Is the convergence uniform on [c, 1] for c > 0?

- 4. Let f be a function with domain $D \subset \mathbb{R}^p$ and range in \mathbb{R}^q .
 - (a) Define what it means to say that f is a **Lipschitz** function.
 - (b) Define what it means to say that f is a continuous function on D.
 - (c) Is a Lipschitz function always continuous?
 - (d) Is a linear function $f : \mathbb{R}^p \to \mathbb{R}^q$ always Lipschitz? [May write f(x) = Ax + b, where A is a $q \times p$ constant matrix, and b is a $q \times 1$ vector]
 - (e) Is a Lipschitz function always differentiable?
 - (f) Let f be a differentiable function defined on an open subset U of \mathbb{R}^p . Is f Lipschtz on U? Is f Lipschtz on any compact subset K of U?
- 5. Let $X = \{x_{mn}\}$ be a double sequence in \mathbb{R}^p .
 - (a) Define what it means to say that x is a limit of $\{x_{mn}\}$.

(b) For each $m \in \mathbb{N}$, let $Y_m = \{x_{mn}\}$ be a sequence in \mathbb{R}^p which converges to y_m . Define what it means to say that $\{Y_m \mid m \in \mathbb{N}\}$ are uniformly convergent.

6. Let $f : [a, b] \to \mathbb{R}$ be differentiable with $0 < m \le f'(x) \le M$ for $x \in [a, b]$ and let f(a) < 0 < f(b). Given $x_1 \in [a, b]$, define the sequence $\{x_n\}$ by $x_{n+1} = x_n - \frac{1}{M}f(x_n)$, for $n \in \mathbb{N}$. Prove that this sequence is well-defined and converges to the unique root \bar{x} of the equation $f(\bar{x}) = 0$ in [Hint: Consider $\phi : [a, b] \to \mathbb{R}$ defined by $\phi(x) = x - \frac{f(x)}{M}$. Does ϕ map [a, b] into [a,b]. $[a, b] = \operatorname{domain}(f)$? **Solution:** For any $x \in [a,b]$, since $0 < f'(t) \le M$ for all $t \in [a,b]$, we have f(x) - f(a) = $\int_{a}^{x} f'(t)dt \leq M \int_{a}^{x} dt = M(x-a) \text{ which implies that } a = x - \frac{f(x)}{M} + \frac{f(a)}{M} \leq x - \frac{f(x)}{M}, \text{ where we have used the assumption that } f(a) < 0 \text{ in the last inequality.}$ Similarly, $f(b) - f(x) = \int_{-\infty}^{b} f'(t)dt \leq M \int_{-\infty}^{b} dt = M(b-x)$ which implies that $b = \frac{f(b)}{M} + x - \frac{f(b)}{M} + \frac{f(b)}$ $\frac{f(x)}{M} + \ge x - \frac{f(x)}{M}$, where we have used the assumption that f(b) > 0 in the last inequality. Hence, the function $\phi(x) = x - \frac{f(x)}{M}$ maps [a, b] into [a, b], and the sequence $x_{n+1} = x_n - \frac{1}{M}f(x_n)$, for $n \in \mathbb{N}$, is well defined if $x_1 \in [a, b]$. For any $x, y \in [a, b]$, since $|\phi(x) - \phi(y)| = |x - y - \frac{f'(c)}{M}(x - y)|$, for some c lying between x, and y. Hence, $|\phi(x) - \phi(y)| \le (1 - \frac{m}{M})|x - y|$ and ϕ is Lipschitz with Lipschitz constant $0 \le 1 - \frac{m}{M} < 1$. Hence, ϕ is a contraction and has a unique fixed point $\bar{x} \in [a, b]$. Since $|x_{n+1} - \bar{x}| = |\phi(x_n) - \phi(\bar{x})| \le (1 - \frac{m}{M})|x_n - \bar{x}| \le (1 - \frac{m}{M})^n|x_1 - \bar{x}| \le (1 - \frac{m}{M})^n(b - a)$, $\bar{x} = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} x_n - \lim_{n \to \infty} \frac{f(x_n)}{M} = \bar{x} - \frac{f(\bar{x})}{M}$. Hence, $f(\bar{x}) = 0$.

- 7. For each integer $k \ge 1$, let $f_k : \mathbb{R} \to \mathbb{R}$ be differentiable satisfying $|f'_k(x)| \le 1$ for all $x \in \mathbb{R}$, and $f_k(0) = 0$.
 - (a) For each $x \in \mathbb{R}$, prove that the set $\{f_k(x)\}$ is bounded. **Solution:** For each $x \in \mathbb{R}$, since $|f_k(x)| = |f_k(x) - f_k(0)| \le |f'_k(c_k)(x-0)| \le |x|$, where c_k lies between x and 0, the set $\{f_k(x)\}_{k=1}^{\infty}$ is bounded.
 - (b) Use Cantor's diagonal method to show that there is an increasing sequence $n_1 < n_2 < n_3 < \cdots$ of positive integers such that, for every $x \in \mathbb{Q}$, we have $\{f_{n_k}(x)\}$ is a convergent sequence of real numbers.

Solution Let $\mathbb{Q} = \{x_1, x_2, \dots\}$. Since $\{f_k(x_1)\}$ is bounded, we can extract a convergent subsequence, denoted $\{f_k^1(x_1)\}$, out of $\{f_k(x_1)\}$. Next, the boundedness of $\{f_k^1(x_2)\}$ implies that we can extract a convergent subsequence, denoted by $\{f_k^2(x_2)\}$, out of $\{f_k^1(x_2)\}$. Continuing this way, the boundedness of $\{f_k^j(x_{j+1})\}$ implies that we can extract a convergent subsequence $\{f_k^{j+1}(x_{j+1})\}$, out of $\{f_k^j(x_{j+1})\}$ for each $j \ge 1$. Let $f_{n_k} = f_k^k$ for each $k \ge 1$. Then $\{f_{n_k}\}$ is a subsequence of $\{f_n\}$ and $\{f_{n_k}\}$ converges at each $x_j \in \mathbb{Q}$.

8. Let \mathscr{F} be a bounded and uniformly equicontinuous collection of functions on $D \subset \mathbb{R}^p$ to \mathbb{R} and let f^* be defined on $D \to \mathbb{R}$ by

$$f^*(x) = \sup\{f(x) \mid f \in \mathscr{F}, x \in D\}$$

Show that f^* is continuous on D to \mathbb{R} . Show that the conclusion may fail if \mathscr{F} is not uniformly equicontinuous.