1. Let f be a function with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q}.
(a) Define what it means to say that f is a bounded function.
(b) If f is bounded, define the supremum norm of f. Check that (i) $\|f\|_{D} \geq 0$, and $\|f\|_{D}=0$ if and only if $f(x)=0 \forall x \in D$; (ii) $\|c f\|_{D}=|c|\|f\|_{D}$; (iii) $\|f+g\|_{D} \leq\|f\|_{D}+\|g\|_{D} \forall f, g \in$ $B_{p q}(D)$, which implies that $f \rightarrow\|f\|_{D}$ is a norm on $B_{p q}(D)$.
2. Let $\left\{f_{n}\right\}$ be a sequence of functions with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q}.
(a) Define what it means to say that $\left\{f_{n}\right\}$ is pointwise convergent on D.
(b) Define what it means to say that $\left\{f_{n}\right\}$ is uniformly convergent on D.
(c) Define what it means to say that $\left\{f_{n}\right\}$ is Not uniformly convergent on D.
3. (a) For each $n \in \mathbb{N}$, let f_{n} be defined for $x>0$ by $f_{n}(x)=\frac{1}{n x}$. For what values of f does $\lim _{n \rightarrow \infty} f_{n}(x)$ exist? Is the convergence uniform on the entire set of convergence? Is the convergence uniform for $x \geq 1$?
(b) Show that, if we define f_{n} on \mathbb{R} by $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$, then $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all $x \in \mathbb{R}$. Is this convergence uniform on \mathbb{R} ?
(c) Show that $\lim _{n \rightarrow \infty}(\cos \pi x)^{2 n}$ exists for all $x \in \mathbb{R}$. Is the limiting function contiuous? Is this convergence uniform?
(d) Let f_{n} be defined on the interval $I=[0,1]$ by the formula

$$
f_{n}(x)= \begin{cases}1-n x, & \text { if } 0 \leq x \leq 1 / n \\ 0 & \text { if } 1 / n<x \leq 1\end{cases}
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists on I. Is this convergence uniform on I ?
(e) Let f_{n} be defined on the interval $I=[0,1]$ by the formula

$$
f_{n}(x)= \begin{cases}n x, & \text { if } 0 \leq x \leq 1 / n \\ n(1-x) /(n-1) & \text { if } 1 / n<x \leq 1\end{cases}
$$

Show that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists on I. Is this convergence uniform on I ? Is the convergence uniform on $[c, 1]$ for $c>0$?
4. Let f be a function with domain $D \subset \mathbb{R}^{p}$ and range in \mathbb{R}^{q}.
(a) Define what it means to say that f is a Lipschitz function.
(b) Define what it means to say that f is a continuous function on D.
(c) Is a Lipschitz function always continuous?
(d) Is a linear function $f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ always Lipschitz? [May write $f(x)=A x+b$, where A is a $q \times p$ constant matrix, and b is a $q \times 1$ vector]
(e) Is a Lipschitz function always differentiable?
(f) Let f be a differentiable function defined on an open subset U of \mathbb{R}^{p}. Is f Lipschtz on U ? Is f Lipschitz on any compact subset K of U ?
5. Let $X=\left\{x_{m n}\right\}$ be a double sequence in \mathbb{R}^{p}.
(a) Define what it means to say that x is a limit of $\left\{x_{m n}\right\}$.
(b) For each $m \in \mathbb{N}$, let $Y_{m}=\left\{x_{m n}\right\}$ be a sequence in \mathbb{R}^{p} which converges to y_{m}. Define what it means to say that $\left\{Y_{m} \mid m \in \mathbb{N}\right\}$ are uniformly convergent.
6. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable with $0<m \leq f^{\prime}(x) \leq M$ for $x \in[a, b]$ and let $f(a)<0<f(b)$. Given $x_{1} \in[a, b]$, define the sequence $\left\{x_{n}\right\}$ by $x_{n+1}=x_{n}-\frac{1}{M} f\left(x_{n}\right)$, for $n \in \mathbb{N}$. Prove that this sequence is well-defined and converges to the unique root \bar{x} of the equation $f(\bar{x})=0$ in $[a, b]$. [Hint: Consider $\phi:[a, b] \rightarrow \mathbb{R}$ defined by $\phi(x)=x-\frac{f(x)}{M}$. Does ϕ map $[a, b]$ into $[a, b]=\operatorname{domain}(f)$?]
Solution: For any $x \in[a, b]$, since $0<f^{\prime}(t) \leq M$ for all $t \in[a, b]$, we have $f(x)-f(a)=$ $\int_{a}^{x} f^{\prime}(t) d t \leq M \int_{a}^{x} d t=M(x-a)$ which implies that $a=x-\frac{f(x)}{M}+\frac{f(a)}{M} \leq x-\frac{f(x)}{M}$, where we have used the assumption that $f(a)<0$ in the last inequality.
Similarly, $f(b)-f(x)=\int_{x}^{b} f^{\prime}(t) d t \leq M \int_{x}^{b} d t=M(b-x)$ which implies that $b=\frac{f(b)}{M}+x-$ $\frac{f(x)}{M}+\geq x-\frac{f(x)}{M}$, where we have used the assumption that $f(b)>0$ in the last inequality.
Hence, the function $\phi(x)=x-\frac{f(x)}{M}$ maps $[a, b]$ into $[a, b]$, and the sequence $x_{n+1}=x_{n}-\frac{1}{M} f\left(x_{n}\right)$, for $n \in \mathbb{N}$, is well defined if $x_{1} \in[a, b]$.
For any $x, y \in[a, b]$, since $|\phi(x)-\phi(y)|=\left|x-y-\frac{f^{\prime}(c)}{M}(x-y)\right|$, for some c lying between x, and y. Hence, $|\phi(x)-\phi(y)| \leq\left(1-\frac{m}{M}\right)|x-y|$ and ϕ is Lipschitz with Lipschitz constant $0 \leq 1-\frac{m}{M}<1$. Hence, ϕ is a contraction and has a unique fixed point $\bar{x} \in[a, b]$.
Since $\left|x_{n+1}-\bar{x}\right|=\left|\phi\left(x_{n}\right)-\phi(\bar{x})\right| \leq\left(1-\frac{m}{M}\right)\left|x_{n}-\bar{x}\right| \leq\left(1-\frac{m}{M}\right)^{n}\left|x_{1}-\bar{x}\right| \leq\left(1-\frac{m}{M}\right)^{n}(b-a)$, $\bar{x}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n}-\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)}{M}=\bar{x}-\frac{f(\bar{x})}{M}$. Hence, $f(\bar{x})=0$.
7. For each integer $k \geq 1$, let $f_{k}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable satisfying $\left|f_{k}^{\prime}(x)\right| \leq 1$ for all $x \in \mathbb{R}$, and $f_{k}(0)=0$.
(a) For each $x \in \mathbb{R}$, prove that the set $\left\{f_{k}(x)\right\}$ is bounded.

Solution: For each $x \in \mathbb{R}$, since $\left|f_{k}(x)\right|=\left|f_{k}(x)-f_{k}(0)\right| \leq\left|f_{k}^{\prime}\left(c_{k}\right)(x-0)\right| \leq|x|$, where c_{k} lies between x and 0 , the set $\left\{f_{k}(x)\right\}_{k=1}^{\infty}$ is bounded.
(b) Use Cantor's diagonal method to show that there is an increasing sequence $n_{1}<n_{2}<n_{3}<$ \cdots of positive integers such that, for every $x \in \mathbb{Q}$, we have $\left\{f_{n_{k}}(x)\right\}$ is a convergent sequence of real numbers.
Solution Let $\mathbb{Q}=\left\{x_{1}, x_{2}, \cdots\right\}$. Since $\left\{f_{k}\left(x_{1}\right)\right\}$ is bounded, we can extract a convergent subsequence, denoted $\left\{f_{k}^{1}\left(x_{1}\right)\right\}$, out of $\left\{f_{k}\left(x_{1}\right)\right\}$. Next, the boundedness of $\left\{f_{k}^{1}\left(x_{2}\right)\right\}$ implies that we can extract a convergent subsequence, denoted by $\left\{f_{k}^{2}\left(x_{2}\right)\right\}$, out of $\left\{f_{k}^{1}\left(x_{2}\right)\right\}$. Continuing this way, the boundedness of $\left\{f_{k}^{j}\left(x_{j+1}\right)\right\}$ implies that we can extract a convergent subsequence $\left\{f_{k}^{j+1}\left(x_{j+1}\right)\right\}$, out of $\left\{f_{k}^{j}\left(x_{j+1}\right)\right\}$ for each $j \geq 1$. Let $f_{n_{k}}=f_{k}^{k}$ for each $k \geq 1$. Then $\left\{f_{n_{k}}\right\}$ is a subsequence of $\left\{f_{n}\right\}$ and $\left\{f_{n_{k}}\right\}$ converges at each $x_{j} \in \mathbb{Q}$.
8. Let \mathscr{F} be a bounded and uniformly equicontinuous collection of functions on $D \subset \mathbb{R}^{p}$ to \mathbb{R} and let f^{*} be defined on $D \rightarrow \mathbb{R}$ by

$$
f^{*}(x)=\sup \{f(x) \mid f \in \mathscr{F}, x \in D\}
$$

Show that f^{*} is continuous on D to \mathbb{R}. Show that the conclusion may fail if \mathscr{F} is not uniformly equicontinuous.

